
1

G52CPP
C++ Programming

Lecture 2

Dr Jason Atkin
E-Mail: jaa@cs.nott.ac.uk

2

The “Hello World” Program
#include <stdio.h>

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

#include <cstdio>

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

C version

C++ version

3

This lecture

• Assuming that you know some basics from
C and Java… you need to know these:

• C++ data types
– Sizes of types
– C types
– Two C++ new types

• Type casting
• Operators
• Pointers

4

Data types

5

Sizes of types…

• The size of types (in bits/bytes) can vary in C/C++
– For different compilers/operating systems
– In Java, sizes are standardised, across O/Ss

• Some guarantees are given:
– A minimum size (bits): char 8, short 16, long 32
– Relative sizes: char ≤ short ≤ int ≤ long

• An int changes size more than other types!
– Used for speed (not portability), but VERY popular! (fast)
– Uses the most efficient size for the platform
– 16 bit operating systems usually use 16 bit int

– 32 bit operating systems usually use 32 bit int

– 64 bit operating systems usually use 64 bit int

• sizeof() operator exists to tell us the size (later lecture)

6

Basic Data Types - Summary

Type Minimum
size (bits)

Minimum range of values
(Depends upon the size on your platform)

char 8 -128 to 127 (WARNING: Java char is 16 bit!)

short 16 -32768 to 32767

long 32 -2147483648 to 2147483647

float Often 32 Single precision (implementation defined)
e.g. 23 bit mantissa, 8 bit exponent

double Often 64 Double precision (implementation defined)
e.g. 52 bit mantissa, 11 bit exponent

long double ≥ double Extended precision, implementation defined

int ≥ short varies

7

bool type (C++ only, not C)

• bool : true /false

• Similar to java’s boolean type
• Boolean expressions have results of type ‘bool ’

in C++
– But type int in C – a difference

• IMPORTANT: bool and int can be converted
implicitly / automatically to each other
– i.e. C++ is backward compatible
– true defined to be 1 when converted to int

– false defined to be 0 when converted to int

– 0 is defined to be false , non-zero as true

8

ints , bools and booleans
• In both C and C++ any integer types (i.e. char, short,

long, int) can be used in conditions
– In C++ the value is silently converted to a C++ bool type

• When using integer types:
– true is equivalent to non-zero (or 1), false is equivalent to zero

• Example:

• In Java this would be an error : “x not boolean”
• In C/C++ this is valid (it means ‘while(x != 0) ’)

int x = 6;
while (x)
{

printf("X is %d\n", x);
x -= 2;

}

9

wchar_t type (C++ only, not C)

• wchar_t : wide character
– Like a Java ‘char ’

• ASCII limited to values 0 to 127 (7 bits)
– Not enough characters for some languages

• wchar_t is designed to be big enough to
hold a character of the : “largest character
set supported by the implementation’s
locale”

(Bjarne Stroustrup, The C++ Programming Language)

10

signed/unsigned values

• Signed/unsigned variants of integer types
– Unlike in Java where they are all signed
– Examples:

signed char sc; unsigned short us;

signed long sl; unsigned int ui;

– Default is signed
• If neither ‘signed ’ nor ‘unsigned ’ stated

11

Simple C-style casts

12

Converting between types
• Data can be converted between types
• Sometimes done implicitly

– If compiler knows how to safely change the type
– e.g. char to a short , short to a long , float to a

double , int to a double (same rules as Java)

• Sometimes it has to be done explicitly
– If conversion may lose data

– e.g. long to a short , short to a char , double to a
float , float to an int (same rules as Java)

– Or compiler needs to confirm that it isn’t an error:
Warnings mean “Are you sure?”

13

Type casts
• Can explicitly change the type via a cast

– C version is exactly the same as Java, and works in C++
– Put the new type inside brackets () , e.g.:

long l = 100L;
short s = (short)l;

– Includes signed <-> unsigned conversion
unsigned int ui = (unsigned int)i;

• C++ also adds new types of casts
– … = static_cast< NEWTYPE>(VARIABLE);
– … = dynamic_cast< NEWTYPE>(VARIABLE);
– … = const_cast< NEWTYPE>(VARIABLE);
– … = reinterpret_cast< NEWTYPE>(VARIABLE);
– E.g. int i = static_cast< int >(longValue);
– Safer and better, see later lecture

14

Operators (same as Java)

15

Sample Operator Precedence List

• Operators are evaluated in a specific order
– Highest operator precedence applies first

• Examples (highest to lowest, not complete)
(), [], ++, -- Grouping, array access, post increment/decrement
++, --, *, & Pre-increment, dereference, address of (right to left)
*, /, % Multiplication, division, modulus
+ - Addition, subtraction
<, <=, >, >= Comparison
==, != Comparison: equal to, not equal to
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
? : Ternary conditional
=, +=, -= etc Assignment and ‘… and assign’ (right to left)

In
cr

ea
si

ng
 p

re
ce

de
nc

e

16

Operator precedence matters

&& has higher precedence than ||
if (a && b || c && d)

means
if ((a && b) || (c && d))

if (a || b && c || d)

means
if (a || (b && c) || d)

17

Operators and precedence

• Operator precedence matters!
• Many style guides state that operator

precedence should not be relied upon
– Makes code less readable
– Prone to reliability of programmer’s memory

• I will NOT mark you down for adding
unnecessary brackets (within reason)
– I do it where I think it aids clarity
– ‘Company’ coding standards often require them

• But you need to know the precedence rules
– To understand code written by others
– An exam question may rely on them

18

Pointers
An introduction/reminder

19

Variables: size and location

Every variable has:
A name: In your program only
An address: Location in memory at runtime
A size: Number of bytes it takes up
A value: The number(s) actually stored

Does it matter:
1) Where a variable is stored?
2) How big a variable is?

20

Variables and memory
• C/C++ let you find out:

– Where variables are in
memory

– How big they are

• In Java we don’t care
– In C/C++ we MAY care
– We can take advantage of

this for faster code

• I am going to use the kind
of table on the right (in
yellow) throughout these
examples (& later lectures)

• Assume all variables are
local variables – defined
within some function

Address Name Type Size

1000 s1 short 2

1002 s2 short 2

1004 l1 long 4

1008 l2 long 4

1012 c1 char 1

1013 c2 char 1

1014 c3 char 1

1015 c4 char 1

Example, local variables:
short s1, s2;
long l1, l2;
char c1,c2,c3,c4;

21

IMPORTANT WARNINGS

• Addresses in diagrams are for illustration only
• Actual positions of data in memory depend upon

– Compiler
– Operating system
– Whether optimisation is turned on

• For example, you cannot assume:
– That local variables will be in adjacent areas in memory
– The ordering of the bytes in a multiple byte data type

• DO NOT RELY ON POSITIONS OF DATA
– UNLESS YOU KNOW THEY ARE FIXED
– There are some guarantees (within arrays and structs)

22

Address of : &

• We can ask for the address of a variable
– And we can ‘write it down’ somewhere
– This is like asking where someone lives

• Use the & operator in C/C++

• E.g.: If we have:
long longvalue = 345639L;

• Then: &longvalue is the address where the
variable longvalue is stored in memory
– Like the address of a person in a street/town

• Now we just have to store the address…

23

Data type for an address?

• But what type of data is an address?
– i.e. &longvalue is of type ???
– Is it a number?
– Is it 2 numbers combined?

• e.g. segmented memory architecture (Win 3.1)

– Is it an int ?
– Is it a long ?
– Is it a short ?
– How are we going to store it?

• Question: Any ideas?

24

Pointers

• We need pointer types!

• Remember: * is used to denote a pointer
– i.e. a variable which will hold the address of some other variable

• Examples:
char* is a pointer to a char

int* is a pointer to an int

void* is a generic pointer, an address of some data of unknown
type (or a ‘generic’ address)

• Remember two things about pointers:
1. The value of the pointer is an address in memory
2. The type of the pointer says what type of data the

program should expect to find at the address

25

The concept of a pointer

• You can think of pointers whichever way
is easier for you

1. As an address in memory and a type
2. As a way of pointing to some other data,

and a record of what type of data you think
the thing pointed at is

Conceptually:

variablepointer

345639

pointer points to/at the variable

26

Putting & and * together

• Example:
– Create a long variable

long l = 345639L;
– Take the address and store it in a long* variable

• i.e. in a pointer to a long

long* pl = &l;

Conceptually:

lpl

345639

Address Name Type Value

1000 l long 345639

3056 pl long* 1000

Actually: (example addresses)

pl points to/at l pl’s value is the address of l

27

Sending a letter
• You can ask for

somebody’s address
and use it to send a
letter

• The postman/woman
does not need to
know who lives there

• He/she can deliver to
the address,
regardless of who is
there

28

Pointers and addresses

• A pointer is like an
address in an address
book

• You can keep multiple
copies of an address
– You can copy the address

into another place

• You can change the
address

• You can use it to send a
letter or visit a friend

29

Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1 Address Name Value

3000 s

5232 ps1

6044 ps2

Actually: (example addresses)

ps2

30

Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1

965

Address Name Value

3000 s 965

5232 ps1

6044 ps2

Actually: (example addresses)

ps2

31

Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1

3000 965

Address Name Value

3000 s 965

5232 ps1 3000

6044 ps2

Actually: (example addresses)

ps2

32

Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• So, assigning one pointer to another means:
– It points at the same object
– It has the same address stored in it (i.e. the same value)

Conceptually:

sps1

3000 965

Address Name Value

3000 s 965

5232 ps1 3000

6044 ps2 3000

Actually: (example addresses)

ps2

3000

33

Sending a letter (again)

• Does the
postman/woman
need to know the
person it is being
delivered to in order
to deliver the letter?

34

Sending a letter

• Does the
postman/woman need
to know the person it is
being delivered to in
order to deliver the
letter?

• No!
It is sufficient that
he/she knows where
the recipient lives!

35

Weird Avenue
• We can use an address to find someone and do something to them
• We don’t need to know who lives there, or what the house is like,

just where it is
• E.g. “The person who lives in 3 Weird Avenue must pay this bill”

– You can make the person pay without knowing them
• Or: “Give this present to the person at 1 Weird Avenue”

– You can give the person a present without knowing who they are

No. 1 No. 2 No. 3 No. 4

The buildings on Weird Avenue

36

Dereferencing pointers

• We can use the thing pointed at, without
knowing what it is
– e.g. without knowing which variable it is

• As long as we know what type of thing it is

• Getting the thing pointed at is called
de-referencing the pointer

37

Dereferencing operator : *

• The * operator is used to access the ‘thing’ that a
pointer points at

• For example: define a char and char*

char c1 = 'h';

char* pc2 = &c1; // pc2 is a pointer to c1

• Ask for the value of the thing pc2 points at
char c3 = *pc2; // *pc2 is thing pointed at

• Thinking in terms of pointers holding addresses…
– pc2 is a char* , so it is the address of a char
– *pc2 is the char pointed at, i.e. c1 !
– So, *pc2 is (now) another name for c1

38

Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

• What goes into the red circled parts?
– Hint: What is *ps2?

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2

Actually: (example addresses)

ps2

3000

s2

39

Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

• So, we can access (use) the value of s1 without knowing it
is the value of variable s1 (just the value at address ps2)

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2

40

Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

*ps1 = 4; Q: What does this do?

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2

41

Dereferencing example
• ‘*ps1 = 4 ’ changes the value pointed at by ps1

• We can change the thing pointed at without
knowing what variable the address actually refers
to (just ‘change the value at this address’)

• The value of s1 changed without us mentioning s1

Conceptually:

s1ps1

3000 4

Address Name Value

3000 s1 4

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2

42

Uninitialised Pointers

• In C and C++, variables are NOT initialised
unless you give them an initial value

• Unless you initialise them, the value of a
pointer is undefined
– Always initialise all variables, including pointers
– You can use NULL

• Dereferencing an unitialised pointer has
undefined results
– Could crash your program (likely)
– Could crash your computer (less likely)
– Could wipe your hard drive? (unlikely)

43

Next lecture

Pointers and arrays
char* and strings

argc and argv

