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C++ Programming

Lecture 2
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The “Hello World” Program
#include <stdio.h>

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

#include <cstdio>

int main(int argc, char* argv[])
{

printf("Hello world!\n");
return 0;

}

C version

C++ version
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This lecture

• Assuming that you know some basics from 
C and Java… you need to know these:

• C++ data types
– Sizes of types
– C types
– Two C++ new types

• Type casting
• Operators
• Pointers
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Data types
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Sizes of types…

• The size of types (in bits/bytes) can vary in C/C++
– For different compilers/operating systems
– In Java, sizes are standardised, across O/Ss

• Some guarantees are given:
– A minimum size (bits): char 8, short 16, long 32
– Relative sizes: char ≤ short ≤ int ≤ long

• An int changes size more than other types!
– Used for speed (not portability), but VERY popular! (fast)
– Uses the most efficient size for the platform
– 16 bit operating systems usually use 16 bit int

– 32 bit operating systems usually use 32 bit int

– 64 bit operating systems usually use 64 bit int

• sizeof() operator exists to tell us the size (later lecture)
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Basic Data Types - Summary

Type Minimum 
size (bits)

Minimum range of values
(Depends upon the size on your platform)

char 8 -128 to 127   (WARNING: Java char is 16 bit!)

short 16 -32768 to 32767

long 32 -2147483648 to 2147483647

float Often 32 Single precision (implementation defined) 
e.g. 23 bit mantissa, 8 bit exponent

double Often 64 Double precision (implementation defined) 
e.g. 52 bit mantissa, 11 bit exponent

long double ≥ double Extended precision, implementation defined

int ≥ short varies
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bool type (C++ only, not C)

• bool : true /false

• Similar to java’s boolean type
• Boolean expressions have results of type ‘bool ’ 

in C++ 
– But type int in C – a difference

• IMPORTANT: bool and int can be converted 
implicitly / automatically to each other
– i.e. C++ is backward compatible
– true defined to be 1 when converted to int

– false defined to be 0 when converted to int

– 0 is defined to be false , non-zero as true
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ints , bools and booleans
• In both C and C++ any integer types (i.e. char, short, 

long, int) can be used in conditions
– In C++ the value is silently converted to a C++ bool type

• When using integer types:
– true is equivalent to non-zero (or 1), false is equivalent to zero

• Example:

• In Java this would be an error : “x not boolean”
• In C/C++ this is valid ( it means ‘while( x != 0 ) ’ )

int x = 6;
while ( x )
{

printf( "X is %d\n", x );
x -= 2;

}
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wchar_t type (C++ only, not C)

• wchar_t : wide character
– Like a Java ‘char ’

• ASCII limited to values 0 to 127 (7 bits)
– Not enough characters for some languages

• wchar_t is designed to be big enough to 
hold a character of the : “largest character 
set supported by the implementation’s 
locale” 

(Bjarne Stroustrup, The C++ Programming Language)
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signed/unsigned values

• Signed/unsigned variants of integer types 
– Unlike in Java where they are all signed
– Examples:

signed char sc; unsigned short us;

signed long sl; unsigned int ui;

– Default is signed
• If neither ‘signed ’ nor ‘unsigned ’ stated



11

Simple C-style casts
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Converting between types
• Data can be converted between types
• Sometimes done implicitly

– If compiler knows how to safely change the type
– e.g. char to a short , short to a long , float to a 

double , int to a double (same rules as Java)

• Sometimes it has to be done explicitly
– If conversion may lose data

– e.g. long to a short , short to a char , double to a 
float , float to an int (same rules as Java)

– Or compiler needs to confirm that it isn’t an error: 
Warnings mean “Are you sure?”
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Type casts
• Can explicitly change the type via a cast

– C version is exactly the same as Java, and works in C++
– Put the new type inside brackets () , e.g.:

long l = 100L; 
short s = (short)l;

– Includes signed <-> unsigned conversion
unsigned int ui = (unsigned int)i;

• C++ also adds new types of casts
– … = static_cast< NEWTYPE>( VARIABLE); 
– … = dynamic_cast< NEWTYPE>( VARIABLE); 
– … = const_cast< NEWTYPE>( VARIABLE); 
– … = reinterpret_cast< NEWTYPE>( VARIABLE); 
– E.g.  int i = static_cast< int >( longValue ); 
– Safer and better, see later lecture
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Operators (same as Java)
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Sample Operator Precedence List

• Operators are evaluated in a specific order
– Highest operator precedence applies first

• Examples (highest to lowest, not complete)
(), [], ++, -- Grouping, array access, post increment/decrement
++, --, *, & Pre-increment, dereference, address of (right to left)
*, /, % Multiplication, division, modulus
+ - Addition, subtraction
<, <=, >, >= Comparison 
==, != Comparison: equal to, not equal to
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
? : Ternary conditional
=, +=, -= etc Assignment and ‘… and assign’ (right to left)
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Operator precedence matters

&& has higher precedence than ||
if (  a && b  ||  c && d  )

means
if ( (a && b) || (c && d) )

if ( a ||  b && c  || d )

means
if ( a || (b && c) || d )
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Operators and precedence

• Operator precedence matters!
• Many style guides state that operator 

precedence should not be relied upon
– Makes code less readable
– Prone to reliability of programmer’s memory

• I will NOT mark you down for adding 
unnecessary brackets (within reason)
– I do it where I think it aids clarity
– ‘Company’ coding standards often require them

• But you need to know the precedence rules
– To understand code written by others
– An exam question may rely on them
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Pointers
An introduction/reminder
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Variables: size and location

Every variable has:
A name: In your program only
An address: Location in memory at runtime
A size: Number of bytes it takes up
A value: The number(s) actually stored

Does it matter:
1) Where a variable is stored?
2) How big a variable is?
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Variables and memory
• C/C++ let you find out:

– Where variables are in 
memory

– How big they are

• In Java we don’t care
– In C/C++ we MAY care
– We can take advantage of 

this for faster code

• I am going to use the kind 
of table on the right (in 
yellow) throughout these 
examples (& later lectures)

• Assume all variables are 
local variables – defined 
within some function

Address Name Type Size

1000 s1 short 2

1002 s2 short 2

1004 l1 long 4

1008 l2 long 4

1012 c1 char 1

1013 c2 char 1

1014 c3 char 1

1015 c4 char 1

Example, local variables:
short s1, s2;
long l1, l2;
char c1,c2,c3,c4;
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IMPORTANT WARNINGS

• Addresses in diagrams are for illustration only
• Actual positions of data in memory depend upon

– Compiler
– Operating system
– Whether optimisation is turned on

• For example, you cannot assume:
– That local variables will be in adjacent areas in memory
– The ordering of the bytes in a multiple byte data type

• DO NOT RELY ON POSITIONS OF DATA
– UNLESS YOU KNOW THEY ARE FIXED
– There are some guarantees (within arrays and structs)
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Address of : &

• We can ask for the address of a variable
– And we can ‘write it down’ somewhere
– This is like asking where someone lives

• Use the & operator in C/C++

• E.g.: If we have: 
long longvalue = 345639L;

• Then: &longvalue is the address where the 
variable longvalue is stored in memory
– Like the address of a person in a street/town

• Now we just have to store the address…
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Data type for an address?

• But what type of data is an address?
– i.e. &longvalue is of type ???
– Is it a number?
– Is it 2 numbers combined?

• e.g. segmented memory architecture (Win 3.1)

– Is it an int ?
– Is it a long ?
– Is it a short ?
– How are we going to store it?

• Question: Any ideas?
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Pointers

• We need pointer types!

• Remember: * is used to denote a pointer
– i.e. a variable which will hold the address of some other variable

• Examples:
char* is a pointer to a char

int* is a pointer to an int

void* is a generic pointer, an address of some data of unknown
type (or a ‘generic’ address)

• Remember two things about pointers: 
1. The value of the pointer is an address in memory
2. The type of the pointer says what type of data the 

program should expect to find at the address
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The concept of a pointer

• You can think of pointers whichever way 
is easier for you

1. As an address in memory and a type
2. As a way of pointing to some other data, 

and a record of what type of data you think 
the thing pointed at is

Conceptually:

variablepointer

345639

pointer points to/at the variable



26

Putting & and * together

• Example:
– Create a long variable

long l = 345639L;
– Take the address and store it in a long* variable 

• i.e. in a pointer to a long

long* pl = &l;

Conceptually:

lpl

345639

Address Name Type Value

1000 l long 345639

3056 pl long* 1000

Actually: (example addresses)

pl points to/at l pl’s value is the address of l
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Sending a letter
• You can ask for 

somebody’s address 
and use it to send a 
letter

• The postman/woman 
does not need to 
know who lives there

• He/she can deliver to 
the address, 
regardless of who is 
there
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Pointers and addresses

• A pointer is like an 
address in an address 
book

• You can keep multiple 
copies of an address
– You can copy the address 

into another place

• You can change the 
address

• You can use it to send a 
letter or visit a friend
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Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1 Address Name Value

3000 s

5232 ps1

6044 ps2

Actually: (example addresses)

ps2
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Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1

965

Address Name Value

3000 s 965

5232 ps1

6044 ps2

Actually: (example addresses)

ps2
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Pointer example
short s = 965;

short* ps1 = &s;

short* ps2 = ps1;

• Q: What goes into the red circled parts?

Conceptually:

sps1

3000 965

Address Name Value

3000 s 965

5232 ps1 3000

6044 ps2

Actually: (example addresses)

ps2
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Pointer example
short s = 965; 

short* ps1 = &s;

short* ps2 = ps1;

• So, assigning one pointer to another means:
– It points at the same object
– It has the same address stored in it (i.e. the same value)

Conceptually:

sps1

3000 965

Address Name Value

3000 s 965

5232 ps1 3000

6044 ps2 3000

Actually: (example addresses)

ps2

3000
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Sending a letter (again)

• Does the 
postman/woman 
need to know the 
person it is being 
delivered to in order 
to deliver the letter?
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Sending a letter

• Does the 
postman/woman need 
to know the person it is 
being delivered to in 
order to deliver the 
letter?

• No! 
It is sufficient that 
he/she knows where 
the recipient  lives!
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Weird Avenue
• We can use an address to find someone and do something to them
• We don’t need to know who lives there, or what the house is like, 

just where it is
• E.g. “The person who lives in 3 Weird Avenue must pay this bill”

– You can make the person pay without knowing them
• Or: “Give this present to the person at 1 Weird Avenue”

– You can give the person a present without knowing who they are

No. 1 No. 2 No. 3 No. 4

The buildings on Weird Avenue
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Dereferencing pointers

• We can use the thing pointed at, without 
knowing what it is
– e.g. without knowing which variable it is

• As long as we know what type of thing it is

• Getting the thing pointed at is called 
de-referencing the pointer
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Dereferencing operator : *

• The * operator is used to access the ‘thing’ that a 
pointer points at

• For example: define a char and char*

char c1 = 'h';

char* pc2 = &c1; // pc2 is a pointer to c1

• Ask for the value of the thing pc2 points at
char c3 = *pc2; // *pc2 is thing pointed at

• Thinking in terms of pointers holding addresses…
– pc2 is a char* , so it is the address of a char
– *pc2 is the char pointed at, i.e. c1 !
– So, *pc2 is (now) another name for c1
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Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

• What goes into the red circled parts?
– Hint: What is *ps2?

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2

Actually: (example addresses)

ps2

3000

s2
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Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

• So, we can access (use) the value of s1 without knowing it 
is the value of variable s1 (just the value at address ps2 ) 

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2
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Dereferencing example
short s1 = 965;

short* ps1 = &s1;

short* ps2 = ps1;

short s2 = *ps2;

*ps1 = 4; Q: What does this do?

Conceptually:

s1ps1

3000 965

Address Name Value

3000 s1 965

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2
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Dereferencing example
• ‘*ps1 = 4 ’ changes the value pointed at by ps1

• We can change the thing pointed at without 
knowing what variable the address actually refers 
to (just ‘change the value at this address’)

• The value of s1 changed without us mentioning s1

Conceptually:

s1ps1

3000 4

Address Name Value

3000 s1 4

5232 ps1 3000

6044 ps2 3000

6134 s2 965

Actually: (example addresses)

ps2

3000 965

s2
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Uninitialised Pointers

• In C and C++, variables are NOT initialised 
unless you give them an initial value

• Unless you initialise them, the value of a 
pointer is undefined
– Always initialise all variables, including pointers
– You can use NULL

• Dereferencing an unitialised pointer has 
undefined results
– Could crash your program (likely)
– Could crash your computer (less likely)
– Could wipe your hard drive? (unlikely)
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Next lecture

Pointers and arrays
char* and strings

argc and argv


